Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Microbiol ; 195(7): 499-506, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23715619

RESUMO

Sporothrix schenckii is a fungal pathogen of humans and the etiological agent of sporotrichosis. In fungi, proper protein glycosylation is usually required for normal composition of cell wall and virulence. Upon addition of precursor oligosaccharides to nascent proteins in the endoplasmic reticulum, glycans are further modified by Golgi-glycosyl transferases. In order to add sugar residues to precursor glycans, nucleotide diphosphate sugars are imported from the cytosol to the Golgi lumen, the sugar is transferred to glycans, and the resulting nucleoside diphosphate is dephosphorylated by the nucleoside diphosphatase Gda1 before returning to cytosol. Here, we isolated the open reading frame SsGDA1 from a S. schenckii genomic DNA library. In order to confirm the function of SsGda1, we performed complementation assays in a Saccharomyces cerevisiae gda1∆ null mutant. Our results indicated that SsGDA1 restored the nucleotide diphosphatase activity to wild-type levels and therefore is a functional ortholog of S. cerevisiae GDA1.


Assuntos
Genes Fúngicos , Pirofosfatases/genética , Pirofosfatases/metabolismo , Sporothrix/enzimologia , Sporothrix/genética , Sequência de Aminoácidos , Parede Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Glicosilação , Complexo de Golgi/metabolismo , Dados de Sequência Molecular , Pirofosfatases/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
2.
Mem Inst Oswaldo Cruz ; 105(1): 79-85, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20209334

RESUMO

Alpha 1,2-mannosidases from glycosyl hydrolase family 47 participate in N-glycan biosynthesis. In filamentous fungi and mammalian cells, alpha1,2-mannosidases are present in the endoplasmic reticulum (ER) and Golgi complex and are required to generate complex N-glycans. However, lower eukaryotes such Saccharomyces cerevisiae contain only one alpha1,2-mannosidase in the lumen of the ER and synthesise high-mannose N-glycans. Little is known about the N-glycan structure and the enzyme machinery involved in the synthesis of these oligosaccharides in the dimorphic fungus Sporothrix schenckii. Here, a membrane-bound alpha-mannosidase from S. schenckii was solubilised using a high-temperature procedure and purified by conventional methods of protein isolation. Analytical zymograms revealed a polypeptide of 75 kDa to be responsible for enzyme activity and this purified protein was recognised by anti-alpha1,2-mannosidase antibodies. The enzyme hydrolysed Man(9)GlcNAc(2) into Man(8)GlcNAc(2) isomer B and was inhibited preferentially by 1-deoxymannojirimycin. This alpha1,2-mannosidase was localised in the ER, with the catalytic domain within the lumen of this compartment. These properties are consistent with an ER-localised alpha1,2-mannosidase of glycosyl hydrolase family 47. Our results also suggested that in contrast to other filamentous fungi, S. schenckii lacks Golgi alpha1,2-mannosidases and therefore, the processing of N-glycans by alpha1,2-mannosidases is similar to that present in lower eukaryotes.


Assuntos
Retículo Endoplasmático/enzimologia , Manosidases/isolamento & purificação , Sporothrix/enzimologia , Manosidases/química , Sporothrix/classificação , Sporothrix/citologia
3.
Mem. Inst. Oswaldo Cruz ; 105(1): 79-85, Feb. 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-539299

RESUMO

Alpha 1,2-mannosidases from glycosyl hydrolase family 47 participate in N-glycan biosynthesis. In filamentous fungi and mammalian cells, á1,2-mannosidases are present in the endoplasmic reticulum (ER) and Golgi complex and are required to generate complex N-glycans. However, lower eukaryotes such Saccharomyces cerevisiae contain only one á1,2-mannosidase in the lumen of the ER and synthesise high-mannose N-glycans. Little is known about the N-glycan structure and the enzyme machinery involved in the synthesis of these oligosaccharides in the dimorphic fungus Sporothrix schenckii. Here, a membrane-bound á-mannosidase from S. schenckii was solubilised using a high-temperature procedure and purified by conventional methods of protein isolation. Analytical zymograms revealed a polypeptide of 75 kDa to be responsible for enzyme activity and this purified protein was recognised by anti-á1,2-mannosidase antibodies. The enzyme hydrolysed Man9GlcNAc2 into Man8GlcNAc2 isomer B and was inhibited preferentially by 1-deoxymannojirimycin. This á1,2-mannosidase was localised in the ER, with the catalytic domain within the lumen of this compartment. These properties are consistent with an ER-localised á1,2-mannosidase of glycosyl hydrolase family 47. Our results also suggested that in contrast to other filamentous fungi, S. schenckii lacks Golgi á1,2-mannosidases and therefore, the processing of N-glycans by á1,2-mannosidases is similar to that present in lower eukaryotes.


Assuntos
Retículo Endoplasmático/enzimologia , Manosidases/isolamento & purificação , Sporothrix/enzimologia , Manosidases/química , Sporothrix/classificação , Sporothrix/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...